

NovalTTM

Rendimiento de generación de energía

Rendimiento	NovaLT™ 5-1	NovaLT™ 12	NovaLT™ 16
Potencia eléctrica del generador	5,5MWe	12,5MWe	16,9MWe
Eficiencia eléctrica a plena carga	29,5%	35,3%	36,4%
Eficiencia eléctrica a 70% de carga	27,5%	31,8%	32,8%
Frecuencia del generador	50/60Hz	50/60Hz	50/60Hz
Reducción de DLN	50% o mejor	50% o mejor	50% o mejor
Emisiones NO _x	15 ppm	15*ppm	15*ppm
Eficiencia térmica y energética	>85%	>80%	>80%
Temperatura de los gases de escape	580°C	496°C	495°C
Flujo de escape	20,4Kg/s	42Kg/s	54,6Kg/s
Producción de vapor seco a 10 bar(a)	14,5tph	23tph	3ltph
Tipo de combustible**	NG/H2NG/HI	NG/H2NG/HI	NG/H2NG/HI/Gasóleo
Caudal de combustible	0,4kg/s	0,7kg/s	0,9kg/s

Rendimiento en condiciones ISO

* 9ppm bajo pedido

** Tipo de combustible: NG= Gas Natural H2NG= Mezclas de H2 con gas natural HI= gases inertes de alta calidad

NovaLTTM

Paquetes de generación de energía

	NovaLT™ 5-1	NovaLT™ 12	NovaLT™ 16
Dimensiones: LxAnxAl (m)	14x2,5x7,9	14,3x2,5x6,4	15,62x3,15x9,52
Peso (toneladas)	65	113	134
Orientación del escape	Axial	Lateral/Vertical	Lateral/Vertical

Mantenimiento NovalT™ 12 y 16 35.000 horas de funcionamiento continuo ... sin inspección anual

programada

	Revisión de la sección caliente
Horas	35.000
Arranques	1.250

Intervalo de mantenimiento más largo

Intercambio rápido

	Inspección mayor
Horas	70.000
Arranques	2.500

Sin inspección anual

Inventario minimizado

ESTUDIO DE CASO #1

Lucart: una historia de éxito para una planta de cogeneración

Cliente

Lucart: Multinacional europea líder en la producción de papel tisú, airlaid y MG

Desafío

Aumentar la rentabilidad de la planta y reducir las emisiones

Solución

- Introducir un proceso de cogeneración impulsado por NovaLT™ 12 con una potencia de 12 MWe, 24t/h de vapor saturado
- Puesta en marcha completada en el cuarto trimestre de 2019

Resultados reales

- 80% de eficiencia del ciclo completo
- 34% de eficiencia eléctrica
- 7.000 toneladas/año de emisiones de CO2 ahorradas frente a la red (equivalente a 2.800 acres de bosque)

NovaLT™ 12 instalado en la planta: ~14000 horas de funcionamiento continuo (24/7) ya acumuladas

ESTUDIO DE CASO #2

Primera turbina de mezcla de hidrógeno del mundo para redes de gas

En julio de 2020, Baker Hughes y Snam completaron con éxito las pruebas de la primera turbina de hidrógeno "híbrida" del mundo diseñada para una red de gas. La prueba allana el camino para implementar la adopción del hidrógeno mezclado con gas natural en la actual infraestructura de la red de transporte de Snam.

Impulsada por una mezcla de hasta el 10% de hidrógeno, la turbina NovaL™ 12 fue diseñada y fabricada por Baker Hughes en Italia.

NovaL™ 12 se instalará en la estación de compresión de gas de Snam en Istrana, Italia.

El proyecto representa un nuevo hito para las infraestructuras italianas, que siguen adaptándose al transporte de hidrógeno y a la reducción de las emisiones de CO₂: en la actualidad, el 70% de las tuberías de Snam ya están construidas con tubos "preparados para el hidrógeno".

Oferta industrial completa

5 a 17 MW (ciclo simple) NovaLT™ DLN: Seco con bajo nivel de NO_x, GT: Turbina de gas, NG: Gas natural, DF: Doble combustible y H2: Hidrógeno

Plantas completas de ciclo combinado/calor y electricidad hasta 70MW

Turbinas de vapor de hasta 130MW

Sistemas de tratamiento y compresión del combustible

Captura de CO₂

Almacenamiento de energía

Soluciones digitales

Amplia gama de acuerdos de mantenimiento

Formación técnica y operativa

Soluciones de financiación

Póngase en contacto con nosotros

