Along with increased energy efficiency, switching to renewable and low emission fuel sources, CCUS plays a critical role in meeting The Paris Agreement climate goals.

Meeting The Paris Agreement will require the capture of 28 gigatonnes of CO2. Without CCUS, the cost of meeting The Paris Agreement will be 70% greater.

CCUS enables decarbonization of existing energy and industrial infrastructure along with removal of CO2 from the atmosphere.

For some of the 'hardest-to-abate' industries, global demand continues to rise and reducing emissions is a major challenge. However, large scale deployment of CCUS has the potential to significantly reduce emissions and keep the world on track to meet The Paris Agreement climate goals.

For decades, our technology has been helping run pilot-scale and the world's biggest CCUS projects. We have the industry's broadest CCUS technology portfolio with flexible solutions from capture, transport, well services, storage, and monitoring technologies. Our rigorous environmental stewardship ensures the life of a project leaves a minimal footprint.

We make complex projects happen by applying decades of successful execution experience in oil & gas, offshore, LNG, and gas storage.

Large scale deployment of CCUS is going to require improving the economic feasibility of CCUS projects. Industry operators are looking for advances in technology innovation, regulatory environments, and improved project integrations.

We have to address high CCUS capital and operational costs to bring down the price per carbon. Operators are also working to identify revenue streams and innovative business models.

For an overview of CCUS opportunities and impact by industry, please refer to the table below:

<table>
<thead>
<tr>
<th>Industry</th>
<th>CCUS Opportunity</th>
<th>IMPACT BY INDUSTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemicals</td>
<td>38%</td>
<td>2.35 billion tonnes</td>
</tr>
<tr>
<td>Cement</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Iron and Steel</td>
<td>15%</td>
<td></td>
</tr>
</tbody>
</table>

With technology advances that provide a minimal and modular footprint, CCUS can integrate into existing industrial facilities.

Globally, some 230 million tonnes (Mt) of CO2 are used each year, with 70-80 Mt CO2 used for enhanced oil recovery.

There are more than 1,200 patented methods of capturing CO2 from emissions streams, but not all are economically feasible.

It is estimated that 93% of the captured CO2 will be permanently stored in geological formations by 2060.

Capturing CO2 is a critical technology to enable a low carbon energy future.

But, a number of challenges are impeding CCUS adoption around the world at scale. With technology advances that provide a minimal and modular footprint, CCUS can integrate into existing industrial facilities.

But, a number of challenges are impeding CCUS adoption around the world at scale.